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The concepts of local temperature and local thermal equilibrium are introduced 
in the context of lattice gas cellular automata (LGGAs) whose dynamics 
conserves energy. Green-Kubo expressions for thermal transport coefficients, in 
particular for the heat conductivity, are derived in a form, equivalent to those 
for continuous fluids. All thermal transport coefficients are evaluated in 
Boltzmann approximation as thermal averages of matrix elements of the inverse 
Boltzmann collision operator, fully analogous to the results for continuous 
systems, and fully model-independent. The collision operator is expressed in 
terms of transition probabilities between in- and out-states. Staggered 
diffusivities arising from spuriously conserved quantities in LGCAs are also 
calculated. Examples of models with either cubic or hexagonal symmetries are 
discussed, where particles may or may not have internal energies. 

KEY WORDS:  Thermal lattice gas; cellular automata; temperature 
definition; Green-Kubo formula; heat conductivity; diffusion coefficient; speed 
of sound. 

1. I N T R O D U C T I O N  

Lattice gas cellular automata (LGCAs) form interesting statistical 
mechanical models (1'2) with extremely simplified dyanmics. They consist 
of many interacting particles moving on a regular space lattice with a 
small set of different speeds. These models are being used for simulating 
nonequilibrium fluid flow on a computer. In the earlier versions of 
LGCAs (~) all particles had the same speed apart from rest particles. Energy 
was either not conserved or just corresponded to number conservation. 
Therefore temperature did not exist for such systems. Later, multiple- 
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speed models were introduced in order to have systems with microscopic 
energy conservation, temperature, temperature gradients, and heat conduc- 
tivity. (3-11~ The LGGA has the same conserved densities as the continuous 
fluid, i.e., mass, momentum, and energy density. 

The goals of this paper are: (i) To introduce in the context of lattice 
gases the concepts of local temperature T and local thermal equilibrium, 
consistent with thermodynamics and statistical mechanics. (ii) To derive in 
a systematic, model-independent fashion Green-Kubo formulas for thermal 
transport coefficients in accordance with irreversible thermodynamics, (12~ in 
particular for the heat conductivity of such LGCAs, following the method 
of ref. 13 for athermal LGCA's. (iii) To evalulate the transport coefficients 
in Boltzmann approximation as thermal averages of matrix elements of the 
inverse collision operator, fully analogous to the results for continuous 
fluids and fully model-independent, (14) (iv) To illustrate the results for 
lattice gases with cubic or hexagonal symmetry and for particles with or 
without internal energy. For one of the models we present some explicit 
results. 

Although there exist scattered results (3-11~ for specific models, none of 
the above issues has been systematically addressed in the lattice gas 
context. We also like to emphasize the importance of defining temperature 
in accordance with thermodynamics and statistical mechanics, and of 
defining thermodynamic driving forces and corresponding transport coef- 
ficients in accordance with irreversible thermodynamics. (12) Frequently 
nonstandard definitions of temperature (6'7~ and thermal transport coef- 
ficients (3'8) are used in the lattice gas literature. 

The equilibrium statistical mechanics of thermal LGCAs, when 
formulated in terms of occupation numbers for the different sites and 
velocity channels, is essentially that of an ideal Fermi gas (see Section 2); 
there are no statistical correlations between occupation numbers of dif- 
ferent channels or different sites. The study of LGCAs out of equilibrium 
is very similar to that of continuous fluids. The concept of local tem- 
perature ~2/ in a nonequilibrium LGCA is introduced through the concept 
of local equilibrium, and not by setting the kinetic energy or pressure 
proportional to T. (3'6) In any ideal Fermi gas the kinetic energy is a 
nontrivial function of density and temperature. In lattice gases it is even 
bounded from above because of the finite number of one-particle states per 
site. The equations of motion for the conserved densities constitute the 
usual set of hydrodynamic equations. In the present paper we consider 
linear transport. Thus, the dissipative fluxes in the hydrodynamic equations 
are proportional to the gradients of the thermodynamic fields and can be 
expressed in the form of the linear constitutive relations of irreversible 
thermodynamics.(12) 
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Owing to the discrete nature of space and time, an LGCA is usually 
plagued by additional conserved quantities (15/ as compared to continuous 
fluid. They give rise to slowly varying local densities, and hence the usual 
set of hydrodynamic equations has to be extended by additional equations 
of motion for the spuriously conserved quantities which involve extra 
transport coefficients for the LGCA. 

In Section 3 we present the lattice gas generalization of the Green- 
Kubo formulas when compared with the heat conductivity and other 
thermal transport coefficients, which are supposedly valid for any d-dimen- 
sional space lattice with an arbitrary number of different velocity states, 
and collision rules conserving energy, particle number, and linear momen- 
tum. The energy ei assigned to a particle may be purely kinetic, or partly 
kinetic and partly internal. The heat conductivity, being a second-rank 
tensor, is isotropic on lattices with cubic or hexagonal symmetry. The 
appearance of the energy as a new conserved variable in thermal LGCAs 
also induces drastic changes in the explicit form of the currents in the 
Green-Kubo formulas when compared to athermal models. 

The Green-Kubo formulas are given in terms of time correlation func- 
tions, measured in equilibrium states described by the canonical or grand 
canonical Gibbs distribution. We want to emphasize that these formulas 
should not be applied without further justification to systems with collision 
rules or transition rates that do not satisfy (semi)-detailed balance (z) with 
respect to the Gibbs distribution. In such systems the structure of the local 
and global equilibrium state is an open problem. 

Section 4 is devoted to extending kinetic theory methods to lattice 
gases, starting with the Boltzmann approximation. Subsequently one may 
implement the ring approximation as recently developed for two- and 
three-dimensional athermal LGCAs. (16-18) The Boltzmann approximation, 
as presented here, generalizes H6non's formula (19) for the viscosity in 
athermal LGCAs to arbitrary transport coefficients for LGCAs with 
temperature. It is independent of any specific model and lattice symmetry. 

The third part of the paper (Section 4) gives three different examples 
of thermal lattice gases with different lattice symmetries and with or 
without internal energies and shows some numerical results. We end with 
a discussion in Section 5. 

2. T H E R M O D Y N A M I C S  OF THERMAL LATTICE GASES 

2.1. Microdynamics 

Lattice gas cellular automata consist of a collection of N particles 
with a finite number of b different velocities, which can be at the sites 
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of a regular d-dimensional lattice with V sites and periodic boundary 
conditions. Its state is specified by the set of occupation numbers n(e, r, t), 
where n(e, r, t ) =  1 if the single-particle state (e, r) is occupied and 0 
otherwise. The collision rules are deterministic or stochastic and obey the 
usual conservation laws of number N=52rcn(e, r, t), momentum P =  
Zrc en(e, r, t), and energy H =  ~-~rc e(C) n(e, r, t). Here e(c) = �89 2 + to(C) is 
the energy of a particle in state e, which may include an internal energy 
e0(c), depending on the model considered. Possible spurious conservation 
laws, which are artifacts of the discrete structure of space and time, must 
also be included ~3) (see Section 3.3). 

The time evolution of the LGCA can be expressed by the 
microdynamic equation 

n(e, r + c ,  t +  1)= n(c, r, t)+Ic(n(t))  (2.1) 

where Ic(n(t)) denotes the collision terms in velocity channel e. It depends 
in a nonlinear fashion on the occupation numbers n(e, r, t) at site r with 
c = {c0, cl, e 2 ..... e b 1}, the bit number b being the number of velocity 
states per site. The conservation laws imply the relation 

~, a(e) Ic(n(t)) = 0 (2.2) 
c 

where a (e )=  {1, e, e(c),...} are the collisional invariants. It ensures the 
existence of local conservation laws with the locally conserved microscopic 
densities, denoted by a caret, 

6(r, t) = ~ a(c) n(e, r, t) (2.3) 
c 

For the three collisional invariants listed above, ti consists of the set 
{t5, ~, ~}, where 15 is the mass density, ~ is the momentum density, and 
is the total energy density. These correspond, respectively, to the conserved 
quantities {N, P, H}, where N is the total number of particles, P is the 
total momentum, and H is the total energy of the system. 

2.2. Equi l ibr ium Proper t ies  

In thermal equilibrium, the state of a lattice gas is conveniently 
described by a grand ensemble with a phase space density proportional to 
exp(b .A) ,  where ll t= {N, H, P, As} includes all spurious invariants A~ 
and all physical ones, and b = { c ~ , - / ? , 7 ,  bs} denotes all conjugate 
thermodynamic variables. By setting ~/=0 and bs=0 ,  one ensures that 
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<P> = 0  and <As> =0,  and the ensemble reduces to the grand canonical 
ensemble with a phase space density proportional to ~ e x p ( ~ N - f i l l ) .  

In equilibrium, the LGCA is very similar to an ideal Fermi gas. The 
distribution function or the average occupation of a single-particle state 
with velocity c at site r is given by 

f~  = (n(e, r ) )  = { 1 + exp[- - 7 + fie(c)] }--I (2.4) 

where fi = 1/kB T is the inverse temperature and ~/fi the chemical potential. 
The density p = ~ c f ~  is restricted to 0 < p < b ,  where b is the bit 
number. The equilibrium correlations of the fluctuations 6n(c, r) are 
entirely determined by Fermi statistics and there are no spatial correlations 
in a lattice gas, i.e., 

(6n(c, r) 6n(e', r ' ) )  = ~:(c) 6cc.,(~rr, 

to(c) = f~  [ 1 - f~  ] 
(2.5) 

From these results there follow immediately the equilibrium properties of 
the thermal lattice gases, such as pressure p and entropy per particle s, i.e., 

p = (l/d) ~ cZf~ 
c (2.6) 

ps = ~ { f~176  + E1 - f~  I n [ 1 -  f~  } 
c 

and the speed of sound Co 2 = (@/Op)s. 

2.3. The  Local Equi l ibr ium Dis t r ibut ion  

The nonequilibrium state of a continuous fluid or LGCA can be 
described at the macroscopic level by the average local densities of number, 
energy, and momentum, a(r, t)=-(fi(r, t))ne, where the average is taken 
over a nonequilibrium ensemble. These quantities are slowly varying in 
space and time. A state of local equilibrium is described by the local 
equilibrium distribution, 

( n ( c , r ) ) , = f l ( c , r ) = { l + e x p [ - b ( r ) ' a ( c ) ] }  ' (2.7) 

The set of thermodynamic fields b(r, t) = {a(r, t), - f i ( r ,  t), 7(r, t), b,(r, t)} 
are conjugate to the average or macroscopic densities a(r, t ) =  {p(r, t), 
e(r, t), g(r, t )=p( r ,  t)u(r, t), as(r, t)}. They are defined through the rela- 
tions a(r, t )=  (~(r, t))~, where the label l denotes an average calculated 
with the local equilibrium distribution. 
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The hydrodynamic equations for the macroscopic local densities a(r, t) 
are obtained (2) by averaging the microscopic local conversation laws (2.1) 
and by making leading-order expansions in the gradients of the 
thermodynamic fields around equilibrium. The local conservation laws for 
a(r, t) contain the local currents (J~(r, t))ne, consisting of a nondissipative 
Euler part, (J~(r, t))l, and a dissipative Navier-Stokes part, AJa(r, t). The 
latter part defines the linear transport coefficients L~,, through the 
constitutive relations (12) 

AJa(r, t) = - ~  L~a, Vb~,(r, t) (2.8) 
a '  

where {Vba} is the set of thermodynamic driving forces. The Green-Kubo 
formulas for Laa, a r e  discussed in the next section. These average equations 
are valid for long times and long distances and can be written in the form 
of the fluid dynamic equations. 

3. T H E R M A L  T R A N S P O R T  COEFFICIENTS 

3.1. Green-Kubo Relations 

The presentation in this section strongly emphasizes that transport 
coefficients of thermal LGCAs are fully described by the well-known 
Green-Kubo formulas for continuous fluids (2~ with a few minor adapta- 
tions for the discreteness of space and time. The transport coefficient La, ~, 
for any d-dimensional thermal LGCA with point particles (single-site 
collisions) is given by the following Green-Kubo relation, (13) 

Laa, = lim V ~ ~ *  e s '(Ja(t)J, ,)  (3.1) 
s ~ 0  

t = 0  

where V is the total number of sites in the system whenever the linear 
transport coefficients exist. Two minor modifications of the Green-Kubo 
formulas for continuous fluids are: the appearance of an asterisk and of a 
discrete time sum instead of an integral. The asterisk on the summation 
indicates that the term with t = 0  has a weight 1/2. This same term, 
multiplied by ( -1 ) ,  is referred to in the lattice gas literature (1~ as the 
propagation part of  the transport coefficient. 

Green Kubo relations always contain subtracted current 3 =  {J~} 
which read in b-vector and b x b-matrix notation 

3 = J - ~ A -  ( 6 A  ~ A ) -  ~- ( ~ A J )  

= ~ j(c)3n(c, r, t) (3.2) 
r ,  c 
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The explicit form of the single-particle current j(c) will be specified when 
discussing specific transport coefficients. The unsubtracted current is 

d = ~  cxa(c) fn(c, r, t) (3.3) 
r , c  

Here 8 n ( e , r , t ) = n ( e , r , t ) - ( n )  is the fluctuation of the occupation 
number around total equilibrium. The set of fluctuations of global 
invariants, f A, includes not only N, H, P in thermal models, but all spurious 
invariants (spurious collisional invariants, staggered invariants, geometric 
or checkerboard invariants,...) of the model under consideration. Equation 
(3.2) implies the orthogonality relation ( J f A ) = 0 .  (13) The transport 
matrix L~, of Green Kubo formulas for CA fluids is a nonnegative-definite 
matrix, implying that Laa>/O for all a. (22) It also includes the spurious 
transport coefficients, connected with the spurious slow modes. 

Next, we discuss the specific transport coefficients that appear in the 
fluid dynamic equations. The heat conductivity 2 is defined as the coefficient 
of proportionality between the dissipative heat current and the temperature 
gradient, i.e., q D = - 2 V T - L T r V / ~ ,  with Lrr=kBT2)~. In all thermal 
d-dimensional LGCAs with point particles the conductivity is given by Lr r  
in (3.1) with a subtracted heat current J r  calculated from (3.2). It satisfies 
the orthogonality relation ( J r P ) = 0 .  The single-particle current j r (e)  
introduced on the second line of (3.2) is 

j r (e)  = cx(e(c) - h) (3.4) 

The function h is the usual enthalpy per particle, (2~ 

h _  
(JT:,Px) Z,. c2g(c) ~c(c) 

(fpfN) \OpJ,- (3.5) 

o ~ = - p v  ~.ea V./u a (3.6) 

where 6/) = (dV) 1 ~rc c26n(c, r) and f H =  ~ ,  e(c) fin(c, r) are, respec- 
tively, the microscopic pressure and energy fluctuations. We also have used 
a number of thermodynamic identities that will be needed later. These 
formulas apply equally well to the continuous fluid, except the one with the 
discrete velocity summations. 

Similarly, the fourth-rank viscosity tensor for the thermal LGCA 
relates the dissipative part of the stress tensor to the gradient of the flow 
field u through 
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where c~fl75 = {x, y, z,... } label Cartesian components. Here u is related to 
the thermodynamic field ~/ by pu = ZgT, and the susceptibility Zg is given 
by Z g = V  l ( P ~ ) = ( 1 / d ) Z c c 2 ~ : ( c  ). The Green-Kubo relation for the 
viscosity tensor becomes then (2) 

v ~  = ( v z g )  - l  ~ *  s, - e (J~/~(t)JTa) (3.7) t=O 
with the subtracted current a ~  defined through 

The second line defines the one-particle current j as in (3.2). The subtracted 
current on the first line is the same as for the continuous fluid, (2~ but 
very different from that of an athermal LGCA, where energy is not a 
conserved variable. For  comparison we quote the current for the athermal 
(AT) models, 

(3.9) 

2 determines the sound velocity in athermal models. where (dp/dp) = c o 
So far we have not used the symmetry of the underlying lattice. First 

we consider a lattice with cubic symmetry. Then the viscosity tensor 
involves in general three independent viscosities, 

V~.ByS=V{SczyS,66-JvSc~55f17--9, "~(4) "( .J','~(4) - -  d } ~ 7 ~  + 2,9 6 ~ 5 ~  + ~ 6 ~ 6 ~  (3.10) V~.ByS=V{SczyS,66-JvSc~55f17--9,"~(4) "( ~ ~fl76 

The cubic invariant tensor ~c4) is equal to 1 if all indices ~, fl, 7, 5 are afly5 
equal, and is zero otherwise. The Green-Kubo formulas for the shear 
viscosity v = V~y~y and cubic viscosity 0 = v . . . .  can be obtained from (3.7) 
and (3.8). They are given by diagonal elements of the transport matrix. The 
explicit expressions for the corresponding single-particle currents are, 
respectively, 

] x y ( e )  = CxCy  (3.11) 
JXX(C)  = I~(Cx2 __ C2y) 



Thermal Cellular Automata Fluids 473 

The viscosity 0 is, for instance, of physical significance in the absorption 
coefficients of elastic waves in the hard-sphere solid, which orders into a 
hexagonally closed-packed lattice at sufficiently high density./23~ 

The bulk viscosity ~ = (1/d 2) v ~  is obtained by contraction of (3.10). 
The first and second terms on the right-hand side are traceless tensors. 
Combination of (3.6) and (3.10) shows that the trace of the stress tensor, 
~rD = - ~ V ' u ,  only involves the bulk viscosity (. This is also the standard 
definition of bulk viscosity in continuous fluids. Its Green-Kubo expression 
is given by (3.7) with a subtracted current J ~ ,  which is the trace of (3.8). 

If the underlying lattice is triangular, as in the two-dimensional FHP 
model, or face-centered hypercubic, as in the quasi-three-dimensional 
FCHC model, (~) then fourth-rank tensors such as (3.10) are isotropic and 
v = 0. If one wants to study properties of isotropic fluid flow by means of 
lattice gases, one can approximately recover isotropy in the nonlinear 
Navier-Stokes equations by using the FHP or FCHC models, or by 
finetuning the available free parameters in cubic models so as satisfy the 
isotropy condition v = 0. 

3.2. B o l t z m a n n  A p p r o x i m a t i o n  

The Green-Kubo relations considered in the previous subsection are 
exact, provided the transport coefficients exist. They require the solution of 
the complete N-body dynamics (2.1). In the Boltzmann approximation the 
dynamics is only treated approximately, in the sense that ring collisions 
and other correlated collisions between particles are neglected. Very 
recently a more sophisticated ring kinetic theory, which is well known in 
the context of continuous fluids, (24'25) has also been developed for LGCAs. 
Here we restrict ourselves to the Boltzmann approximation. Then the 
nonequilibrium average ( I ~ ( n ( t ) ) ) n  e of (2.1) is replaced by I t ( f ) ,  where 
f (e ,  r, t ) =  (n(e, r, t))n,.  Thus the average of the product of occupation 
numbers is factorized into a product of averages. This means that the 
collisions of the particles are treated as being completely uncorrelated. By 
taking the average of (2.1), one obtains 

f(e ,  r + e ,  t +  1 ) = f ( e ,  r, t ) + I ~ ( f )  (3.12) 

In the evaluation of the Green-Kubo formulas only the linearized kinetic 
equation is needed. (26) Thus, we expand I , ( f )  in deviations from total 
equilibrium to obtain 

/~if)  = /~(f0)  _ (2 cc ,6j ; ,  _ s c,,c,, 6 i t ,  6fc,, + . . .  (3.13) 
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where I f i f  ~ =0,  and 6f~ is short for 6f(c, r, t ) = f ( c ,  r, t ) - f ~  Here ~2c~., 
is the linearized Boltzmann collision operator. Closely following the 
analysis for the athermal models, as given in refs. 16 and 26, we find that 
the Green-Kubo formula reduces to 

[1 1] 
L~a = Y'. ja(c') ~ - - ~  l<(c)ja(c) (3.14) 

c ' ,  c c ' c  

This provides the Boltzmann approximation to any transport coefficient in 
thermal lattice gas models, and even includes all athermal models as a 
special case for fl = 0. It has the same general structure and validity as the 
Chapman-Enskog results ~ for continuous gases. The explicit forms of the 
currents have been specified in the previous subsection. Below we will 
specify the collision operator in terms of the transition probabilities 
between in-states and out-states for any detailed balance model. We note 
the appearance of the thermal weight ~c(c) of (2.5), which is absent in 
athermal models. In a continuous gas K(c) is replaced by a Maxwellian 
~exp( -1 t i c=)  and velocity summations are replaced by integrations. 

From the collision rules for the specific model under consideration we 
can construct Ic(f)  and obtain D,., explicitly. For the detailed balance 
models of interest here the collisions at a single node can be specified by 
a symmetric transition probability A(s--+s')=A(s' ~ s )  from an in-state, 
specified by a set of occupation numbers s =  {si(r)}, to an out-state 
s ' =  {s~(r)}. The label i refers to the velocity state ci with ( i=0 ,  1,..., b -  1). 
For detailed definitions of the symbols we refer to ref. 1. We express the 
collision operator s163 v explicitly in terms of A ( s ~ s ' )  following 
Section 8.2 of ref. 1, with the result 

~u~(ej) = y~ (s~- s;) A(s ~ s') pof~)sj (3A5) 
s',s 

This formula should be compared with the linear Boltzmann collision 
operator in Eq. (8.23) of ref. 1 for athermal models. In the present case 
po(s) is the completely factorized probability distribution of occupation 
numbers at a single node r in true thermal equilibrium, given by 

b 1 

po(s)= I~ {[/~ 1 --f~ ~ ~'} 
j = o  

exp [cgS(r I s) - flO(rls)] 
(3.16) 

-- Z{.} exp[~fi(rln) - fld(rln) ] 

where fi(rls) = Zj  sj(r) and ~(r I s) = Y~j a(cj) ss(r ) are, respectively, the total 
number of particles and total energy at node r. The distribution function 
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depends on temperature fi and chemical potential c~, or equivalently on 
density p. We further observe that the product matrix (f2K);i= s is 
symmetric on account of detailed balance, and can be cast into a similar 
form as Eq. (8.23) of ref. 1 for athermal models. Note, however, that the 
matrix f20. is not symmetric. 

The evaluation of (3.14) either requires the solution Ba(c ) of the linear 
system of equations s a = ~cj~ (which is the analog of the Chapman 
Enskog integral equation for continuous gases ~ or a decomposition of 
~cja into eigenvectors of O. Which method to use is a matter of convenience 
and depends somewhat on the model under consideration (see Section 4). 
We illustrate here the decomposition into eigenvectors. The transport 
coefficients can be calculated in terms of right eigenfunctions and eigen- 
values of the b x b collision matrix 1"2, i.e., 

s = og,,K~n (3.17) 

They are orthogonal with respect to a weighted thermal inner product 

(0. I~,m > = S ~(e) 0,,(c) ~,m(c) (3.18) 
c 

where K(c) is a weight factor defined in (2.5). The transport coefficient can 
then be expressed as 

(~,, I O , )  ~-~.-2 (3.19) 

with eigenvalues satisfying the inequalities, 0 ~< on < 2. 
The simplest case is realized whenever the current Kj~ itself is an eigen- 

vector of f2. This occurs in the majority of athermal lattice gases with a 
small (depending on the number of space dimensions) number of speeds, 
such as in the 4-bits H P P  model (1) and in the 4-bits model of ref. 27, in 
6- and 7-bits models on a triangular lattice, ~ and in the 24-bits FCHC 
model. ~ The same holds for the 8- and 9-bits thermal models (3'4'6) on a 
square lattice. 

In that case only the term with n = a  contributes and (3.19) can be 
written as 

( L l j a )  2 1 
Loa= (J~[ & IJ , )  ~ ( J a t J a )  (3.20) 

Using (3.17), we have expressed the eigenvalue co a in terms of a thermal 
matrix element of the collision operator, i.e., 

(LI  ~Q IJa) =EJa(c ' )  ff2c,cK(C) L(c) (3.21) 
cc '  
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where the product matrix s has been defined in (3.15). The present 
formula (3.20) includes as special cases the viscosity formulas (3.39) of 
ref. 19 and formula (8.25) of ref. 1 for the isotropic athermal lattice models 
in these papers. 

In general, however, (3.20) is not correct as more eigenvalues are 
involved, as in (3.19). In ref. 2 this was shown, for instance, for a 5-bits 
one-dimensional model. It is also the case in b-bits triangular lattice gases 
with b >~ 12 (see Section 4). 

The formula (3.20) may, however, be used as a first estimate of the 
Boltzmann value of the transport coefficients. In fact, in the case of 
continuous gases it represents the well-known f irst Enskog approximation 
to the solution of the Chapman Enskog integral equation, s , 
obtained by expanding Ba(c ) in terms of Sonine polynomials. (14) It is an 
approximation to the Boltzmann value of transport coefficients that is 
usually correct within a few percent. 

3.3. S t a g g e r e d  D i f fus iv i t i es  

Model-independent expressions for transport coefficients related to 
spurious conservation laws do not exist, because these invariants depend 
crucially on the number of different speeds involved and, less sensitively, on 
the underlying lattice and collision rules. The most frequently occurring 
spurious invariant is the total staggered momentum, discovered by 
Kadanoff et al. (151 It occurs not only in the athermal 6- and 7-bits models 
on the triangular lattice, but also in many thermal models on square or 
cubic lattices, such as the 8- and 9-bits thermal models on the square 
lattice. (28) 

We therefore treat the diffusivity related to the slowly decaying 
staggered momentum mode as a prototypical example. Each staggered 
invariant is characterized by a reciprocal lattice vector ~,(15.28) and denoted 
by 

H~ = ~ h~(r, t ) = ~  ( - ) t + ~ ' r ( e ' c ) n ( c ,  r, t) 
r r , c  

(3.22) 

There may be a set of such c-vectors. They give rise to new slow, staggered 
densities h~. At the level of linear deviations from equilibrium, the equa- 
tions of motion for these staggered densities do not couple to the usual set 
of hydrodynamic variables and satisfy a simple diffusion equation, 

O~h~(k, t) = -~:~(~:) h~(k, t) (3.23) 
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where ~(/~) is the staggered diffusivity and /~ is the unit vector parallel to 
k. The staggered diffusivity can also be expressed (ls'28) in terms of 
Green-Kubo relations (3.1) with the corresponding current defined as 

L( t )  = ~ ( -  )'+ ~"(/~" e)(~ �9 e) 6n(e, r, t) (3.24) 
r , c  

The/~-dependent diffusivity can be split into two diffusion constants, 

~(/~) = (/~. e)Z~u + (/~. ~•177 (3.25) 

where e• is the unit vector perpendicular to ~. The parallel and 
perpendicular diffusivities can be evaluated in Boltzmann approximation. 
We write out the result obtained for the perpendicular diffusivity, 

~• 1 j• (2 A 2 tc(c')j• (3.26) 
, ' c c '  

where the susceptibility )~g is defined above (3.8). The matrix A,,., is 
diagonal and is given by Acc,= A(c)6cc, = [1 + ( - ) " ' c ]  dice,. The expression 
for ell is obtained by replacing ja  by Jlt, and the currents are given by 

j•  = (e •  and ju = ( ~ . e )  2 (3.27) 

The above expressions represent the Boltzmann approximation to the 
staggered diffusivity. They are only applicable to models that do have 
staggered momentum invariants. The calculation of (3.25) requires again 
the solution B(c) of a system of linear equations, (O - A)B = ~cj. This equa- 
tion does not resemble the Chapman Enskog integral equations, because 
of the appearance of the A operator. 

4. T H R E E  T H E R M A L  LGCAs 

4.1. N ine -B i ts  Square  Latt ice Gas 

In a strictly formal sense one may interpret an athermal binary 
mixture LGCA with slow (cold) and fast (hot) particles as a thermal one- 
component model, (8) although there is no exchange of energy between hot 
and cold particles. The Green-Kubo expressions for binary diffusion 
coefficient and heat conductivity are then simply proportional. ~ 

Here we take the point of view that a lattice gas during thermalization 
should allow a redistribution of particles over the different energy states. In 
order to allow energy exchange between hot and cold particles, multispeed 



478 Ernst and Das 

models are required with at least three different speeds. The three models 
to be considered below all satisfy this minimal requirement. We first 
consider different versions of the 9-bits model on the square lattice. (4"6'7) 

The state of the system is given by the set of occupation numbers 
n(e, r, t), where n(e, r, t) is equal to 1 if the velocity channel c at site r 
is occupied and vanishes otherwise. The collisions, referred to as 
a, b, c, d-collisions, are shown in Fig. 1. They conserve particle number, 
momentum, and kinetic energy. The particles have no internal energy. 
There are in total nine possible velocity states. There is one rest particle 
with speed Ic[ =0 ,  four slow particles with speed ]el =1 ,  and four fast 
particles with speed ]c[ = xf2. 

The currents in the Green-Kubo formulas for particles without 
internal energy simplify, as pressure p and energy density e = (d/2)p are 
essentially the same. The microscopic expression (3.4) for the heat current 
contains the enthalpy per particle h, which reduces to 

1 (@)  ldcg Zce4K(c ) 
h=sd  ~p ,=5 2Ec2K(c) (4.1) 

as follows from (3.5). Similarly, the subtracted current for the viscosity 
reduces to 

Y~ = J~ - 6~(2/d) 6H 

j~fl = c:~c ~ - ~ aflc2/d 
(4.2) 

Consequently, the bulk viscosity, ~ = (l/d2)v~flfl, vanishes identically. This 
is because the trace of (4.2), Y ~ - 0 ,  or alternatively, the unsubtracted 
current, J ~  = (2/d)H, it itself a conserved quantity. The vanishing of the 
bulk viscosity in thermal lattice gases is a general result for models with 

/ , ,  / = 

Zc z a  

Fig. 1. The collision rules for the thermal LGCA. The black circle in collision (b) represents 
a rest particle. Scattering from in-states into out-states occurs with probability xp 
(p=a,b,c,d). 
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particles that possess only kinetic energy. In athermal LGCAs the bulk 
viscosity only vanishes in single-speed models. The 9-bits model has two 
staggered momentum invariants, given by (3.22) with two independent 
choices for ~:, namely (1, 0) and (0, 1). 

Further evaluation requires specification of the collision rules. One 
may impose the collision rules (A) where the collisions in Fig. 1 only occur 
in the absence of all other particles. An alternative set of rules (B) is: binary 
collisions between like particles, i.e., (a)-collisions and (d)-collisions, occur 
irrespective of the presence of unlike particles. Some extra parameters xp 
(p = a, b, c, d) might be introduced into the model by imposing that the 
in-state of a p-collision scatters with probability Xp into the out-state (see 
Fig. 1). With probability 1-Xp,  in-states and out-states are equal. There 
exist many more alternatives for constructing collision rules that conserve 
number, energy, and linear momentum, involving 2-, 3-,..., up to 7-tuple 
collisions. The models can be made self-dual, yielding interesting extensions 
into the temperature-density plane of the symmetry between low and high 
densities that exists in the self-dual athermal LGCAs. 

The transition probabilities A(s ~ s') for the different alternatives can 
be read off from Fig. 1 and the Q-matrix can be constructed with the help 
of Eq. (3.14). 

The analytic expressions for the transport coefficients (3.15) are found 
as functions of the chemical potential c~ and the inverse temperature fi, 

o 

,,,.4 ~ 
4. 
% o  

o 

Fig. 2. 

r-,, 

g 
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0= '0 .8  _ _ . _ _ . - - - -  

i J i 

d 3 . 0  4 , 0  5 . 0  6 . 0  ~ 

d 

8=0.2 
o i i i i i i i i 
d 

0 . 0  1 .0  2 .0  3 .0  4 . 0  5 . 0  6 .0  7 . 0  8 , 0  9 .0  

P 

Isotherms for the heat conductivity 022(p, 0), normalized with respect to its value at 
0 = 1, versus the density p in the 9-bits model. 

822/66/1-2-31 
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because s in (3.15) and K(c) in (2.5) depend on these parameters. To 
obtain the transport coefficients as functions of density p and reduced 
temperature 0 - e x p ( - � 8 9  one has to solve ~ as a function of p and 0 
from p(~, f l ) = Z , . f ~  and insert the result into (3.14). In the numerical 
calculations we set the probabilities for different collisions x a = x b =  
Xc = xa = 1 and use the collision rule A, described above. 

In Fig. 2 we show how the heat conductivity 022(p, O) varies with 
density. It is normalized with respect to its value at 0 - -1  in order to 
remove effects coming from the obvious density dependence of the collision 
frequencies, the v's. The figure indicates that, for moderate to high 
temperatures, 2(p, 1) contains the dominant density dependence, leaving 
the normalized function almost structureless. However, for vanishingly 
small values of 0, i.e., at very low temperature, there appear discontinuities 
in the p dependence of the thermal conductivity, which are visible around 
the density p = 5 and can be analyzed in detail from the analytic expres- 
sions. In Fig. 3 we show the isochores for the heat conductivity as a further 
illustration. The further analytic evaluation and a graphical presentation of 
the Boltzmann results for all transport coefficients in the 9-bits model will 
be published elsewhere. ~29) 

o. 

m 
o 

~o 

0!. 
o 

o 
cS 

0.0 

p=9.0 

p=l.0 

0.2 0.4 0.6 0.8 1,0 
8 

Fig. 3. Isochores for the heat conductivity 022(p, 0), normalized with respect to its value at 
0 = 1, versus temperature 0 in the 9-bits model. 



Thermal Cellular Automata Fluids 481 

4.2. N ineteen-Bi ts  Tr iangular  Lattice Gas 

This model, recently introduced by Grosfils et al., ~3~ is a thermal 
model with nontrivial energy conservation and with isotropic fourth-rank 
tensors. There are no staggered momentum invariants. The particles live on 
a triangular lattice, there is one rest particle, and 3 x 6 particles with speed 
c = 1, c = x f3 ,  and c = 2, respectively. Their energy is purely kinetic. There- 
fore the results (4.1) and (4.2) apply. The bulk viscosity vanishes for all 
densities and temperatures. As the viscosity tensor (3.7) is isotropic, the 
shear viscosity v and the cubic viscosity 0 are equal. We further note that 
the shear viscosity in the present model cannot be expressed in a form 
similar to Eq. (3.20) or to Eq. (8.25) of ref. 1. The reason is that the current 
J ~  or equivalently Q ~ =  c,cl3-6cr is not an eigenfunction of the 
Boltzmann collision operator f2, but has components in three different 
eigenspaces. This can be seen by extending the symmetry considerations of 
ref. 26. For  detailed calculations of the transport coefficients we refer to 
ref. 31. 

4.3. Th i r teen-Bi ts  Tr iangular  LGCA w i t h  internal Energy 

This model ~32) with isotropic fourth-rank tensors serves to illustrate 
the effects of internal energy on heat conductivity and bulk viscosity. The 
result is again analogous to the continuous case, where the bulk viscosity 
is nonvanishing for a dilute gas with internal degrees of freedom, but 
vanishing without. There is one rest particle, six slow particles with c = 1, 
and six fast ones with c = x/3. There are no staggered invariants. 

The total energy per particle, t ( c ) =  �89 2 +to(C), consists of kinetic 
energy, �89 2, and internal energy, to(C). The latter is only nonvanishing for 
fast particles, where the internal energy is Co(x/-3)=- �89 and the total 
energy is t(x/-3 ) = 1. In the present model the energy density and pressure 
are different, and the corresponding currents (3.4) and (3.8) do not simplify 
any further. The bulk viscosity, which is nonvanishing in this model, and 
the shear viscosity cannot be expressed in the form (3.20), because the 
current J ~  has components in two different eigenspaces of O. 

5. D ISCUSSION 

This paper presents a systematic extension of the theory of athermal 
lattice gases to thermal ones, both for equilibrium statistical mechanics, as 
well as for the evaluation of transport coefficients in the Boltzmann 
approximation. The formulation of transport coefficients is model-inde- 
pendent, and is applicable whenever the transport coefficients exist. The 
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resulting explicit expressions for thermal transport coefficients in terms of 
collision integrals are the direct counterparts of the corresponding collision 
integrals in the Chapman-Enskog theory/14) 

The close parallels with continuous systems as well as consistency with 
concepts from statistical mechanics and irreversible thermodynamics have 
been emphasized throughout this work. 

By setting /~ = 0 in the present formulas (infinite temperature), and 
using the collision rules or transition probabilities A(s ~ s') of the athermal 
models, one recovers the explicit expressions for the transport coefficients, 
as derive in refs. 1 and 19. The thermal conductivity is of particular 
interest, because it does not occur in any of the standard athermal lattice 
gases. However, the bulk viscosity is also strongly affected by energy con- 
servation. It vanishes identically in all thermal LGCAs, where particles only 
possess kinetic energy. In athermal lattice gases the bulk viscosity is in 
general nonvanishing (except for single-speed models). However, if the 
particles in a thermal lattice gas also possess internal energy, then the bulk 
viscosity is nonvanishing. The last property has a direct analog in the bulk 
viscosity of continuous gases without and with internal degrees of freedom. 

Before closing, we recall that the Navier-Stokes equations and their 
corresponding linear transport coefficients do not exist in two-dimensional 
systems, as a consequence of the long-time tails. Navier-Stokes equations 
with finite transport coefficients can only be an approximation in some 
intermediate time regime, which may be extremely long in most relevant 
lattice gases. (331 
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